Sains
Malaysiana 53(2)(2024): 409-419
http://doi.org/10.17576/jsm-2024-5302-14
Carbon Dioxide Adsorption on Iron (III) Oxide
Pillarized Na-Montmorillonite
(Penjerapan Karbon Dioksida pada Ferum (III)
Oksida Terpilar Na-Montmorilonit)
MUHAMMAD NAUVAL FARRAS RUSSAMSI1, FIRMAN
JOSHUA NAINGGOLAN1, TRIATI DEWI KENCANA WUNGU1,2,3,*
& SUPRIJADI1,2,3
1Graduate Program of Nanotechnology,
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, West Java, Indonesia
2Physics Department, Faculty of Mathematics
and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung,
West Java, Indonesia
3Research Center for Nanosciences and
Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, West
Java, Indonesia
Received: 6 September 2023/Accepted: 19 January 2024
Abstract
Iron (III) oxide
(Fe2O3) pillarized Na-montmorillonite (NaMMT) was
prepared by ion-exchanging and calcining three different concentrations (0.025,
0.05, and 0.075 M) of Fe(OH)3 with NaMMT. The obtained materials
were then examined for its ability to capture carbon dioxide, using
thermogravimetric methods. The structural, compositional, and textural changes
caused by pillarization were also examined using XRD, XRF, FTIR, and BET-BJH.
The results showed that NaMMT-0.025 (pillared using 0.025 M of Fe(OH)3)
and NaMMT-0.075 exhibit superior adsorption capacity compared to NaMMT, with
NaMMT-0.025 having the greatest capacity. By contrast, NaMMT-0.05 registers a
decrease in the amount of CO2 adsorbed, compared to NaMMT. Using
XRF, it was shown that the amount of Fe2O3 present in the
samples correspond to the concentration of Fe(OH)3 used in
ion-exchange. XRD results shows that the interlayer space of NaMMT barely
changed after addition of Fe2O3. Using FTIR, successful pillarization of Fe2O3 is confirmed, and by combining it with BET-BJH, it shows that addition of Fe2O3 could enhance carbon capture by creating favourable pore structures. Overall,
it shows that adding an appropriate amount of Fe2O3 to
montmorillonite will enhance CO2 adsorption.
Keywords: Adsorption; carbon
dioxide; montmorillonite; pillarization
Abstrak
Ferum (III) oksida (Fe2O3) terpilar dalam
Na-montmorilonit (NaMMT) telah disiapkan dengan cara menukar ion tiga kepekatan
berbeza Fe(OH)3 (0.025, 0.05, dan 0.075 M) dengan NaMMT, kemudian
memanggangnya. Bahan yang diperoleh kemudian diperiksa untuk keupayaannya
menangkap karbon dioksida menggunakan kaedah termogravimetri. Perubahan
struktur dan komposisi akibat pilari pun juga telah diperiksa menggunakan XRD,
XRF, FTIR dan BET-BJH. Hasil kajian menunjukkan bahawa NaMMT-0.025 (dipilar
menggunakan 0.025 M Fe(OH)3) dan NaMMT-0.075 menunjukkan kapasiti
penyerapan yang lebih unggul berbanding dengan NaMMT, dengan NaMMT-0.025
menunjukkan kapasiti terbesar. Sebaliknya, NaMMT-0.05 menunjukkan penurunan
jumlah CO2 yang diserap berbanding dengan NaMMT. Menggunakan XRF,
didapati jumlah Fe2O3 dalam sampel sepadan dengan
kepekatan Fe(OH)3 yang digunakan dalam pertukaran ion. Hasil XRD
menunjukkan ruang antara lapisan pada NaMMT hanya berubah sedikit disebabkan
oleh penambahan Fe2O3. Menggunakan FTIR, pemilaran Fe2O3 disahkan berjaya dan dengan menggabungkannya dengan hasil BET-BJH, didapati
bahawa penambahan Fe2O3 dalam jumlah yang sesuai membina
struktur liang yang menggalakkan penyerapan CO2. Secara
keseluruhannya, ini menunjukkan bahawa penambahan jumlah Fe2O3 yang sesuai ke dalam montmorilonit akan meningkatkan penyerapan CO2.
Kata
kunci: Karbon dioksida; montmorilonit; pemilaran; penyerapan
REFERENCES
Banik, N.,
Jahan, S., Mostofa, S., Kabir, H., Sharmin, N. Rahman, M. & Ahmed, S. 2015.
Synthesis and characterization of organoclay modified with cetylpyridinium
chloride. Bangladesh J. Sci. Ind. Res. 50: 65-70.
Bineesh,
K.V., Kim, D-K., Cho, H-J. & Park, D-W. 2010. Synthesis of metal-oxide
pillared montmorillonite clay for the selective catalytic oxidation of H2S. Journal of Industrial and Engineering Chemistry 16(4): 593-597.
Bouazizi,
N., Barrimo, D., Nousir, S., Ben Slama, R., Roy, R. & Azzouz, A. 2017.
Montmorillonite-supported Pd0, Fe0, Cu0 and
Ag0 nanoparticles: Properties and affinity towards CO2. Applied
Surface Science 402: 314-322.
Busch, A., Bertier,
P., Gensterblum, Y., Rother, G., Spiers, C.J., Zhang, M. & Wentinck, H.M.
2016. On sorption and swelling of CO2 in clays. Geomech. Geophys.
Geo-Energ. Geo-Resour. 2: 111-130.
Chauhan, T.,
Udayakumar, M., Ahmed Shehab, M., Kristály, F., Katalin Leskó, A., Ek, M.,
Wahlqvist, D., Tóth, P., Hernadi, K. & Németh, Z. 2022. Synthesis,
characterization, and challenges faced during the preparation of zirconium
pillared clays. Arabian Journal of Chemistry 15: 103706.
Chen, Y-H.
& Lu, D-L. 2015. CO2 capture by kaolinite and its adsorption
mechanicm. Applied Clay Science 104: 221-228.
Cottet, L.,
Almeida, C.A.P., Naidek, N., Viante, M.F., Lopes, M.C. & Debacher, N.A.
2014. Adsorption characteristics of montmorillonite clay modified with iron
oxide with respect to methylene blue in aqueous media. Applied Clay Science 95: 25-31.
Desai, H.,
Kannan, A. & Reddy, G.S.K. 2023. Sustainable and rapid pillared clay
synthesis with applications in removal of anionic and cationic dyes. Microporous
and Mesoporous Materials 352: 112488.
Dongmo,
L.M., Jiokeng, S.L.Z., Pecheu, C.N., Walcarius, A. & Tonle, I.K. 2020.
Amino-grafting of montmorillonite improved by acid activation and application
to the electroanalysis of catechol. Applied Clay Science 191: 105602.
Eggleton, T.
2012. A Short Introduction to Climate Change. Cambridge: Cambridge
University Press.
Feng, B.,
Wei, Y., Qiu, Y., Zuo, S. & Ye, N. 2018. Ce-modified AIZr pillared clays
supported-transition metals for catalytic combustion of chlorobenzene. Journal
of Rare Earths 36: 1169-1174.
Gates-Rector,
S. & Blanton, T. 2019. The powder diffraction file: A quality materials
characterization database. Powder Diffr. 34(4): 352-360.
Hristodor,
C-M., Vrinceanu, N., Pode, R., Copcia, V.E., Botezatu, E. & Popovici, E.
2013. Preparation and thermal stability of Al2O3-clay and
Fe2O3-clay nanocomposites, with potential application as
remediation of radioactive effluents. J. Therm. Anal. Calorim. 111: 1227-1234.
Kumararaja,
P., Manjaiah, K.M., Datta, S.C. & Sarkar, B. 2017. Remediation of metal
contaminated soil by aluminium pillared bentonite: Synthesis, characterisation,
equilibrium study and plant growth experiment. Applied Clay Science 137:
115-122.
Lee, S-Y.
& Park, S-J. 2013. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of Colloid and Interface
Science 389(1): 230-235.
Li, Q., Sun,
X., Zhang, W., Sun, Z., Na, S., Chen, Z., Wang, L., Yuan, C. & Sun, H.
2022. Effect of Fe(III)-modified montmorillonite on arsenic oxidation and anthracene
transformation in soil. Science of The Total Environment 814: 151939.
Madejová, J.
2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31: 1-10.
Marco-Brown,
J.L., Barbosa-Lema, C.M., Torres Sánchez, R.M., Mercader, R.C. & Dos Santos
Afonso, M. 2012. Adsorption of picloram herbicide on iron oxide pillared
montmorillonite. Applied Clay Science 58: 25-33.
Patel, H.A.,
Somani, R.S., Bajaj, H.C. & Jasra, R.V. 2006. Nanoclays for polymer
nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery
vehicle and waste water treatment. Bull. Mater. Sci. 29: 133-145.
Poppe, L.J.,
Paskevich, V.F., Hathaway, J.C. & Blackwood, D.S. 2001. A Laboratory
Manual for X-Ray Powder Diffraction. https://doi.org/10.3133/ofr0141
Quiroz-Estrada,
K., Hernández-Espinosa, M.A., Rojas, F., Portillo, R., Rubio, E., López, L.
2016. N2 and CO2 adsorption by soils with high kaolinite
content from San Juan Amecac, Puebla, México. Minerals 6(3): 73.
Raganati,
F., Miccio, F. & Ammendola, P. 2021. Adsorption of carbon dioxide for
post-combustion capture: A review. Energy Fuels 35(16): 12845-12868.
Rubin, E.,
Abanades, J.C., Akai, M., Benson, S., Keith, D., Mazzotti, M., Metz, B.,
Osman-Elasha, B., Palmer, A., Smekens, K. & Soltanieh, M. 2005. IPCC
Special Report : Carbon Dioxide Capture and Storage, 1st ed.
Cambridge: Cambridge University Press.
Ruiz-Torres,
C.A., Araujo-Martínez, R.F., Martínez-Castañón, G.A., Morales-Sánchez, J.E.,
Guajardo-Pacheco, J.M., González-Hernández, J., Lee, T-J., Shin, H-S., Hwang,
Y. & Ruiz, F. 2018. Preparation of air stable nanoscale zero valent iron
functionalized by ethylene glycol without inert condition. Chemical
Engineering Journal 336: 112-122.
Salerno, P.
& Mendioroz, S. 2002. Preparation of A1-pillared montmorillonite from
concentrated dispersions. Applied Clay Science 22(3): 115-123.
Sobhanardakani, S., Jafari, A.,
Zandipak, R. & Meidanchi, A. 2018. Removal of heavy metal (Hg(II) and
Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent Process Safety and Environmental
Protection 120: 348-357.
Thommes, M.,
Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J.
& Sing, K.S.W. 2015. Physisorption of gases, with special reference to the
evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10): 1051-1069.
Tomul, F.
2012. Influence of synthesis conditions on the physicochemical properties and
catalytic activity of Fe/Cr-pillared bentonites. Journal of Nanomaterials 2012: 237853.
Wang, X.,
Cheng, H., Chai, P., Bian, J., Wang, X., Liu, Y., Yin, X., Pan, S. & Pan,
Z. 2020. Pore characterization of different clay minerals and its impact on
methane adsorption capacity. Energy Fuels 34(10): 12204-12214.
Wu, K., Ye,
Q., Wu, R., Chen, S. & Dai, H. 2020. Carbon dioxide adsorption behaviours
of aluminum-pillared montmorillonite-supported alkaline earth metals. Journal
of Environmental Sciences 98: 109-117.
*Corresponding
author; email: triati@itb.ac.id
|